Strong $I^K$-Convergence in Probabilistic Metric Spaces
نویسندگان
چکیده
In this paper we introduce strong $I^K$-convergence of functions which is common generalization $I^*$-convergence in probabilistic metric spaces. We also define and study $I^{K}$-limit points same space.
منابع مشابه
Completeness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملExpansion semigroups in probabilistic metric spaces
We present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
متن کاملexpansion semigroups in probabilistic metric spaces
we present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
متن کاملStrong convergence of modified noor iteration in CAT(0) spaces
We prove a strong convergence theorem for the modified Noor iterations in the framework of CAT(0) spaces. Our results extend and improve the corresponding results of X. Qin, Y. Su and M. Shang, T. H. Kim and H. K. Xu and S. Saejung and some others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iranian Journal of Mathematical Sciences and Informatics
سال: 2022
ISSN: ['1735-4463', '2008-9473']
DOI: https://doi.org/10.52547/ijmsi.17.2.273